Review of NCRP Commentary 19

Key Elements Of Preparing Emergency Responders For Nuclear And Radiological Terrorism

Joseph P. Ring, Ph.D., CHP
Harvard University
Radiation Protection Office

Objectives of Presentation

- Overview of Commentary
- Identify Key Points
 - Radiation Protection
 - Equipment
 - Medical Issues
Commentary Background

- Prepared for Department of Homeland Security (DHS)
 - Prepare emergency responders for nuclear and radiological terrorism
- Resource for state and local planning
- Builds on previous NCRP Reports
 - NCRP 65, Management of Persons Accidentally Contaminated with Radionuclides
 - NCRP 138, Management of Terrorist Events Involving Radioactive Materials
- Categories of Advice to DHS
 - Radiation Protection Guidance
 - Equipment needs
 - Medical supplies
 - Training needs

Introduction

- Recommendations apply only to an emergency
 - only until declared emergency over
- Post Emergency
 - reinstate established radiation protection practices
 - occupational
 - public exposure
 - Special arrangements for long-term control
Local Implementation

- Consistent with the existing format and content of Standard Operation Procedures
- Identify local potential hazards and vulnerabilities
- Compatible with the equipment used by the end user
- Consider local customs and language
- Identify local radiological emergency response resources
- Prepare for an elevated radiation environment

Emergency Responder

- Those individuals who, in the early stages of an incident, are responsible for protection and preservation of:
 - Life
 - Property
 - Evidence
 - Environment
Radiation Protection Guidelines

Radiation Protection Goals

- Prevent acute injuries and deaths due to short-term high-level radiation exposure
- Minimize long-term effects
 - ALARA principle
 - Use time, distance, and shielding
Total Dose Guidelines

- Control absorbed dose to an individual emergency responder
 - Cumulative absorbed dose for external photons only
 - Neutrons are not expected or minimal contributor
 - Alpha and beta particles can not penetrate bunker gear
 - Control inhalation by respiratory protection
- Establish Decision Dose
 - Decide when to remove a responder from the inner perimeter
- Record the cumulative absorbed dose to responders working in or near the inner perimeter
- Applies for life saving or other critical actions

Outer Perimeter

- Establish an outer perimeter if:
 - 10 mR h\(^{-1}\) exposure rate
 - Surface contamination is above:
 - 60,000 dpm cm\(^{-2}\) for beta and gamma
 - 6,000 dpm cm\(^{-2}\) for alpha
Outer Perimeter Activities

- Evacuate members of the public
- Isolate area
- Minimize time spent in the area
- Follow *appropriate* personal protection guidelines
- Activities to keep *outside* area
 - Command Post and support
 - Staging areas
 - Decontamination areas

Inner Perimeter

- Establish an *inner perimeter* at:
 - 10 R h\(^{-1}\)
 - Potential to produce acute radiation injury
- Restrict access to time-sensitive, mission critical activities, e.g. life-saving
- Wear an alarming personal radiation detector inside the inner perimeter
Decision Dose

- Short-term cumulative absorbed dose that triggers a decision to remove a responder
 - Incident Commander makes decision necessary to protect responder and public from harm
- Based on the absorbed dose where acute effects occur
 - Threshold for acute effects is ~100 rad on average
 - Applies a factor-of-two safety margin to minimize the risk
 - Allows for possible uncertainties in:
 - individual susceptibility
 - radiation dose measurement
 - contingencies

High Dose Considerations

- Recognize symptoms of high absorbed doses
 - nausea
 - vomiting
- If symptoms occur within the inner perimeter, remove the individual
- Physical injuries such as burns and wounds significantly increases risks of acute radiation effects
- Death can result from combined injuries, if injury or radiation exposure alone not lethal
High Absorbed Dose Risks

- Estimated excess cancer risks at doses < 100 rad are less than the normal risk of cancer without radiation exposure.
- For doses above several hundred rad, the excess cancer risk approaches or exceeds the normal lifetime cancer risk.

Basis for Decision Dose

<table>
<thead>
<tr>
<th>Short-term Whole-Body Dose [rad]</th>
<th>Acute Death(^a) from Radiation without Medical Treatment (%)</th>
<th>Acute Death(^a) from Radiation with Medical Treatment (%)</th>
<th>Acute Symptoms (nausea and vomiting within 4 h) (%)</th>
<th>Lifetime Risk of Fatal Cancer without Radiation Exposure (%)</th>
<th>Excess Lifetime Risk of Fatal Cancer due to Short-term Radiation Exposure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td><5</td>
<td>0</td>
<td>5 – 30</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td><5</td>
<td><5</td>
<td>40</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td><5</td>
<td>40</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>300</td>
<td>30 – 50</td>
<td>15 – 30</td>
<td>75</td>
<td>28</td>
<td>26(^b)</td>
</tr>
<tr>
<td>400</td>
<td>95 – 100</td>
<td>>90</td>
<td>100</td>
<td>28</td>
<td>>46(^b)</td>
</tr>
<tr>
<td>1,000</td>
<td>100</td>
<td>>90</td>
<td>100</td>
<td>28</td>
<td>>50(^b)</td>
</tr>
</tbody>
</table>

\(^a\) Short-term is exposure during response. The acute effects likely reduced by ½ if exposed occurs over weeks.
\(^b\) Acute deaths are likely occur 30 to 180 d after exposure. Few if any ever.
\(^c\) Most cancers occur several decades after exposure; leukemia has a shorter latency period (< 5 y).
\(^d\) Applies to those individuals that survive the acute radiation syndrome.
Equipment Recommendations

First Responder Equipment

- Post Event equipment requirements are very different than illicit radiation source detection (pre-event)
 - Pre-event equipment range is too limited to support most emergency operations
- Inexpensive radiation-monitoring equipment can help responders quickly determine if radiation is involved in an incident
- Equipment should alert responders to the radiation without any special action
- Some training is necessary to operate and interpret results
 - especially contamination monitors
- A positive indication for radiation
 - characterization efforts
 - Implement dose controls (establish inner and outer perimeters)

- Standard protective clothing *(bunker gear)* and respiratory protection devices are sufficient to protect emergency responders
First Responder’s Emergency Vehicle

- Alert personnel to the presence of radiation
 - Alert at 10 mR h\(^{-1}\)
 - corresponds to the outer perimeter
- Essentially “go” or “no go”
- Protective of responders
 - Do not need other alarms
 - 10 R h\(^{-1}\) (the inner perimeter) or
 - Decision Dose (50 rad)

First On-Scene

For a suspected radiological event:
- An individual monitor is preferred over a single detection instrument for an entire response team
- Unambiguous alarms at:
 - 10 R h\(^{-1}\) - The inner perimeter
 - Decision Dose of 50 rad
Detection Instrument

Initial responders should have simple tools to:

- Identify contamination at outer perimeter
- Detection is more important than selectivity, sensitivity and accuracy
- Find surface contamination
 - 60,000 dpm cm\(^{-2}\) for beta and gamma
 - 6,000 dpm cm\(^{-2}\) for alpha

Post-Incident Monitor

- Easy to interpret in bunker gear
- Alert at higher than normal radiation levels w/o interaction
 - Recognize levels above 10 mR h\(^{-1}\)
 - Alarm at decision dose for dose (50 rad)
 - Alarm at high exposure rate (10 R h\(^{-1}\))
- **Visual** or audible indicators
 - *green/yellow/red* light or large numeric display
- Displays exposure rate and records cumulative dose
- Works continuously without user intervention
- Simple and intuitive, requires little training to operate
- Small size, and easily and securely worn (not carried)
- Inexpensive to purchase and maintain
- Rugged enough for field use
Alarming Personal Radiation Detectors

- Identify radiation exposure rates
 - 1 mR h\(^{-1}\) to 500 R h\(^{-1}\)
- Integrate exposure up to 500 R
- Visual status indicator (not necessarily a numerical readout)
- Assigned to each emergency responder
 - If not possible,
 - first individual to enter the area should have a radiation-detection instrument
 - Warn others of radiation presence
 - Implement administrative exposure controls

Instrument Alerts

- Alert and alarm levels set by the local authority
 - ensure compliance with local guidelines
 - reduces need for the wearer to read and interpret

 - Steady Red light (and audible or vibration)
 - cumulative absorbed dose of 50 rad

 - Blinking Red light
 - exposure rate above 10 R h\(^{-1}\)

 - Yellow light
 - exposure rate between 10 mR h\(^{-1}\) and 10 R h\(^{-1}\)

 - Green Light
 - exposure rate is below 10 mR h\(^{-1}\)
Decontamination and Medical

Decontamination Goals

- Minimize the time to treat victims
- Promptly remove victims from the incident scene while providing responder safety
Screening People

- Additional equipment and supplies needed to screen large numbers of people for contamination
 - At the scene
 - At emergency facilities for initial decontamination
 - Designated reception centers
 - Hospitals

Instruments to Decontaminate People

- Detect the presence of an external radiation and surface contamination
 - readily available
- A thin-window GM (either “pancake,” or end-window)
- Supplement equipment and expertise by using:
 - academic and medical centers
 - biomedical research facilities
 - nuclear medicine departments
Capabilities

- Detect surface contamination
 - 6,000 dpm cm$^{-2}$ for beta or gamma
 - 600 dpm cm$^{-2}$ for alpha
- Make Equipment easy to use:
 - For a standard 15 cm2 GM probe
 - 20 percent efficiency (1 cpm = 5 dpm)
 - Divide the number of cpm by three to get dpm cm$^{-2}$
 - $\frac{# \text{ dpm cm}^{-2}}{3} = \left(\frac{\text{cpm}}{15 \text{ cm}^2}\right) \times (5 \text{ dpm/cpm}) = \frac{\text{cpm}}{3}$

Radionuclide Identifiers

- Initial response can be managed without knowing the specific radioactive material
- Identifiers should be available to but not needed at scene
- Identification allows better management of contaminated people and protective measures
- Commercial identifiers have been available for many years
 - Identify gamma-ray emitting radioactive materials
 - Requires considerable knowledge and skill to operate
 - Improved units available for a technician level person to interpret
- High initial and ongoing operating costs of an identifier may not warrant purchase
 - Expect state radiation control organizations to bring
 - Nuclear medicine laboratories
 - University radiation safety programs
 - Research laboratories
 - Radioactive materials licensees
 - Hazardous materials teams
- Nuclear medicine gamma cameras can identify radionuclide
Initial Monitoring and Decontamination

- Prevent acute radiation effects to victim
- Cross contamination is a secondary concern
 - especially when the contaminated area and number of evacuees is large
- Spot contamination > 2.2×10^6 dpm (1 µCi) should be a priority for decontamination
 - presume spot size is 0.2 cm2
- Screening can be done quickly
 - ~15 s per person using a thin window “pancake” GM
 - ~2.5 min per person using an end-window instrument (CDV-718 civil defense meter)
 - ~4 min per person with a “hotdog” style GM probe (CDV-700 civil defense meter)

Decon Fluid Release

- Not a priority to contain all the fluids generated in decontamination
- The Incident Commander decides based on
 - Incident severity
 - Immediacy of the decontamination
 - Resources available
- EPA (CERCLA, 1980) states:
 - Will not pursue enforcement actions for the environmental consequences of necessary and appropriate emergency response actions
 - Emergency responders should take any necessary emergency actions to save lives and protect the public and themselves
Victim/Patient Decontamination

- Staging and Decontamination Area should have:
 - Adequate triage
 - Supplies
 - Copious water supply
 - Containment (if possible)
 - Consideration of clothing exchange and individual privacy
 - Protection from hypothermia
 - May be more hazardous than the contamination

Consider Self-Decontamination

- Cover mouth to reduce inhalation of resuspended particles
- Remove and bag outer clothing before entering the residence
- Shower with warm (not hot) water
 - Use soap and shampoo (not hair conditioner)
 - Do not abrade skin
- Remove contaminated clothing
 - Normally removes 80 to 90 percent of contamination
 - Wrap patient in a sheet prior to transport
Self-Decontamination (cont)

- Spot decontaminate with soap and warm (not hot) water
 - Stop decontamination if:
 - skin abrasion occurs
 - Two successive attempts do not reduce the contamination
- Reduce surface body contamination
 - To less than 9,000 dpm cm⁻²
 - any one spot to < 2.2 × 10⁵ dpm (0.1 µCi)
- Extensive Decon facilities not necessary unless:
 - large number of contaminated victims
 - immediate medical care is not the primary consideration

Medical Evaluation

- Radioactive material contamination is rarely an immediate danger to the health of the victim or the responder
 - Reduce the immediate need for decontamination
 - Allow greater flexibility in selecting decontamination options
- Nausea and vomiting are the earliest clinical signs of acute radiation syndrome
 - WD Dose > 100 rad
 - Remove from inner perimeter activities if signs exhibited
 - Consider potential for more than one agent
 - symptoms may be caused by other agents
Emergency Dept Plan

- Radiation danger to emergency hospital personnel is minimal
 - outside of the radiation control zones
- Focus on standard medical care
- Establish plans for patient care
 - Determine patient routing (destination of casualties)
 - Facility requirements for the treatment of emergent and trauma patients
- Address psycho-social concerns
- Provide psychological assistance at healthcare facilities for:
 - concerns about radiation contamination
 - victims
 - individuals
 - friends and relatives

ED Staff Protection

- Universal precautions are sufficient for treatment of victims of radiological incidents
 - Dress in surgical clothing (scrub suit, gown, mask, cap, eye protection, and gloves)
 - Wear waterproof shoe covers
 - Tape all open seams and cuffs
 - Wear two pairs of surgical gloves
 - first pair taped at the arm cuff
 - second pair should be easily removable and replaced
 - Assign a self-reading radiation dosimeter
 - Place on the outside of the surgical gown
 - at the neck
 - easily removed and read
ED Entrance Monitoring

- Report above normal radiation levels
- Monitor for contaminated individuals
- Set alarm high enough to minimize response to nuc med patients (10 mR h⁻¹)
- Possible radiation portal monitor or pedestrian portal monitor

Triage

- Multi-parameter triage (time to vomiting, lymphocyte kinetics and other biodosimetry indicators) is the best early assessment of victim dose
- Treat promptly
 - The first hour is best change to save lives of severely injured
 - Radioactive material must not interfere with rapid triage, removal and treatment
- Rad concerns must not preclude life-saving efforts
 - Patients in shock or near shock can die if not treated w/in 1st hr
- Nasal swabs indicates likelihood of inhalation
 - not always a confirmation of no intake
 - inhaled material is cleared from nasal passages w/ 17 hr half-time
ED Dose Control

- Establish plans to operate critical medical facilities and critical care equipment with low levels of radioactive contamination
 - Label fixed contamination
 - Use barriers and lead sheeting to reduce exposure rates to < 2 mR h\(^{-1}\) during decontamination efforts
 - Keep the cumulative dose to staff and uncontaminated patients to < 100 mrem in the year following the event
 - could increase to 500 mrem, if necessary for medical care
 - Keep critical facilities operational

- 50 rem dose guideline applies when undertaking life-saving medical care
 - surgical removal of highly radioactive embedded shrapnel

Medical Care PPE

- Standard Personal Protection Equipment normal clothing (a uniform) will provide some protection from contamination
- Avoid prolonged wearing of contaminated clothing
 - Will not protect a person from external radiation exposure
- Cover the mouth and nose with a handkerchief or bandana to reduce the possibility of inhaling airborne radioactive materials
- Exposure rates from contaminated wounds rarely exceed a few mR h\(^{-1}\)
- Emergency responders should be reassured that exposures very likely insignificant
Medical Vehicles

- Monitor transport vehicles before reuse
- Reuse low-level contaminated vehicles
 - Consider outer perimeter values
 - Document in local emergency plan
 - Consult local and state radiation control programs

Training
Training Objectives

- Enhance ability to take appropriate measures to protect themselves and the public
- Increase confidence to effectively manage a radiation emergency involving
- Integrate with existing training

Base Messages

- Radio-contamination is rarely life-threatening
- Radiation exposure does not make a person radioactive
Baseline Training

- All emergency responders should receive initial training related to duties
- Integrate into the overall training requirements
- Reinforced through professional accreditation or continuing education credits
- Radiological emergencies can be safely managed using the emergency responder’s equipment and protocols
- Rescue and medical emergencies take precedence over radiological
- Train those potentially involved in life-saving activities at the operations level
- Annual refresher training to maintain proficiency not as extensive as initial training